Universal Quadratic Forms, Small Norms, and Traces in Families of Number Fields
نویسندگان
چکیده
We obtain good estimates on the ranks of universal quadratic forms over Shanks' family simplest cubic fields and several other families totally real number fields. As main tool we characterize all indecomposable integers in these elements codifferent small trace. also determine asymptotics principal ideals norm less than square root discriminant.
منابع مشابه
Ternary quadratic forms over number fields with small class number
We enumerate all positive definite ternary quadratic forms over number fields with class number at most 2. This is done by constructing all definite quaternion orders of type number at most 2 over number fields. Finally, we list all definite quaternion orders of ideal class number 1 or 2.
متن کاملOne class genera of ternary quadratic forms over number fields
We enumerate all one class genera of definite ternary quadratic forms over number fields. For this, we construct all Gorenstein orders of type number one in definite quaternion algebras over number fields. Finally, we list all definite quaternion orders of ideal class number one.
متن کاملTheta Functions of Indefinite Quadratic Forms over Real Number Fields
We define theta functions attached to indefinite quadratic forms over real number fields and prove that these theta functions are Hilbert modular forms by regarding them as specializations of symplectic theta functions. The eighth root of unity which arises under modular transformations is determined explicitly.
متن کاملGonii: Universal Quaternary Quadratic Forms
We continue our study of quadratic forms using Geometry of Numbers methods by considering universal quaternary positive definite integral forms of square discriminant. We give a small multiple theorem for such forms and use it to prove universality for all nine universal diagonal forms. The most interesting case is x2 + 2y2 + 5z2 + 10w2, which required computer calculations.
متن کاملApplications of quadratic D-forms to generalized quadratic forms
In this paper, we study generalized quadratic forms over a division algebra with involution of the first kind in characteristic two. For this, we associate to every generalized quadratic from a quadratic form on its underlying vector space. It is shown that this form determines the isotropy behavior and the isometry class of generalized quadratic forms.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Mathematics Research Notices
سال: 2022
ISSN: ['1687-0247', '1073-7928']
DOI: https://doi.org/10.1093/imrn/rnac073